82049-Alig

АКАДЕМИЯ НАУК СССР ОРДЕНА ЛЕНИНА ИНСТИТУТ ОБЩЕЙ И НЕОРГАНИЧЕСКОЙ ХИМИИ ИМ. Н.С. КУРНАКОВА

На правах рукописи

л.А. ЕГОРОВ

КРИСТАЛЛИЗАЦИЯ ТРОЙНЫХ ТВЕРДЫХ РАСТВОРОВ АРСЕНИД — ФОСФИД ИНДИЯ МЕТОДОМ ГАЗОТРАНСПОРТНЫХ РЕАКЦИЙ

специальность 070 (неорганическая химия)

АВТОРЕФЕРАТ
диссертации на соискание ученой степени
кандидата химических наук

MOCKBA - 1969

БИБЛИОТТИА МИНИЧЕСКОЙ ПИТЕРАТУРЫ Анадомии Неучей Така Работа выполнена в лаборатории химии полупроводников Института общей и неорганической химии им. К.С. Курнакова и в группе химических транспортных реакций Института новых химических проблем Академии Наук СССР.

Научный руководитель — доктор химических наук 3.C. Медведева.

Официальные оппоненты : доктор химических наук В.Б. Лазарев, кандидат технических наук Л.Я. Кроль.

Ведущее предприятие -- Московский Институт стали и сплавов.

О дне и времени защиты за 10 дней будет опубликовано в газете n Вечерняя Москва n .

Институт общей и неорганической химии им. Н.С. Курнакова просит Вас и сотрудников Вашего учреждения, интересующих—ся темой диссертации, принять участие в заседании Ученого Совета или прислать свои отзывы.

Предварительно защита назначена на март 1969 г.

С диссертацией можно ознакомиться в библиотеке Отделения жимических наук АН СССР (Ленинский проспект, 31).

Автореферат разослан ^и и 1969 г.

Ученый секретарь ИОНХ
кандидат химических наук

/ М.А. Глушкова /

В последние годы в различных областях науки и техники успешно применяются полупроводниковые материалы, особое место среди которых занимают двойные соединения $\mathbf{A} \ \mathbf{B} \ \mathbf{B} \ \mathbf{B} \ \mathbf{B} \ \mathbf{A} \ \mathbf{B} \ \mathbf{$

От уровня исследовательских работ по синтезу, очистке и выращиванию монокристаллов данных веществ в большой степени зависит дальнейшее развитие физики и химии твердого тела, квантовой электроники, микрорадиоэлектроники, счетно-решающей техники;

Ш У
Однако такие особенности соединений А В, как заметная диссоциация и высокие значения упругости пара летучего компонента в точке плавления, значительно усложняют технологию выращивания их
монокристаллов по Чохральскому, путем зонной плавки и направленной кристаллизации.

Одним из перспективных, но пока малоизученных методов кристаллизации полупроводниковых материалов из газовой фазы является метод химических транспортных реакций, позволяющий получать чистые и совершенные по структуре, а в случае твердых растворов, однородные по составу монокристаллы при температурах более низких, чем температуры плавления исходных веществ.

Следует отметить, что вопрос получения двойных полупроводшиковых соединений из газовой фазы с применением транспортных прентов за счет живической реакции в литературе обсуждается довольно вироко. В то же время, несмотря на персполтивность практического использования, выращивание монокристаллов тройных $\mathbf{M} \ \mathbf{Y}$ твердых растворов между соединениями $\mathbf{A} \ \mathbf{B}$, в том числе и твердых растворов системы $\mathbf{J} \mathbf{n} \mathbf{A} \mathbf{s} - \mathbf{J} \mathbf{n} \mathbf{P}$, методом газотранспортных реакций почти не описано.

В связи с этим основная задача настоящей работы заключалась в нахождении оптимальных условий кристаллизации твердых
растворов арсенид-фосфид индия из газовой фазы указанным методом с применением йода в качестве переносчика путем изучения
гетерогенного равновесия в системе JnAs - JnP - J₂ и закономерностей химического взаимодействия между исходными компонентами
при различных температурах, а также в исследовании физико-химических и электрофизических свойств полученных монокристаллов.

Диссертация состоит из введения, пяти глав, одну из которых занимает литературный обзор, а остальные посвящены описанию методики и обсуждению результатов эксперимента, выводов и списка цитируемой литературы.

Работа выполнена в лаборатории химии полупроводников ИОНХ им. Н.С. Курнакова и в группе химических транспортных реакций инхи АН СССР.

ПЕРВАЯ ГЛАВА.

Возможность образования твердых растворов между полупром и и
водниковыми соединениями A B в первую очередь зависит от кристаллической структуры и типа химической связи исходных компонентов. В связи с этим в главе рассматриваются физические и химические свойства арсенида и фосфида индия, а также твердых растворов JnAs 1-х Р х, которые характеризуются высокими значениями электропроводности (при высокой подвижности электронов) и
коэффициента термо-э.д.с. в сочетании с низкой теплопроводнос-

Особенности кристаллизации твердых растворов соединений И У А В обусловлены наличием двухфазной области между линиями лик — видуса и солидуса на Т-Х диаграмме. Из-за различия в составах соприкасающихся фаз при переходе из жидкого состояния в твердое в системе Эл Аз — Эл Р образуются твердые растворы замещения с внутрикристаллической ликвацией и переменного состава даже после многократного зонного выравнивания. Для получения однородных слитков Эл Аз — Р необходимо поддерживать постоянными давления мышьяка и фосфора в течение всего процесса.

Здесь же обсуждаются различные варианты кристаллизации полупроводниковых твердых растворов GaAs — GaP и JnAs — GaAs методом газотранспортных реакций. Данные о выращивании монокристаллов твердых растворов арсенид-фосфид. индия этим методом в литературе отсутствуют.

В главе рассматриваются основные принципы переноса вещества за счет химической реакции, методики расчета количества вторичной твердой фазы в зависимости от условий эксперимента, а также некоторые вопросы изучения равновесия в транспортных системах.

ВТОРАЯ ГЛАВА.

Посе дена описанию методов исследования гетерогенного равновесия, процесса переноса и кристаллизации в системе ${\sf Jn}\,{\sf As}\,-\,{\sf Jn}\,{\sf P}\,-\,{\sf J}_2$.

В качестве исходных веществ использовали арсенид и фосфид индия, синтезированные из элементарных индия (ИН-50), мышьяка и фосфора (B-5), и кристаллический йод марки B-5.

Измерение общего равновесного давления в системе ${\tt Jn\,As}$ — ${\tt J}_2$ (твердая фаза в избытие) проводили в приборе с кварцевым манометром Бурдона компенсационным четодом в интервале 20-930 $^{\rm O}$ С.

Наличие в электрической схеме прибора конденсаторного датчика с высокочастотным генератором позволяло фиксировать давление с точностью \pm 0,5 мм рт.ст.

Для проведения серийных опытов в одинаковых условиях при исследовании системы ${\rm Jn}\ {\rm As}\ -{\rm JnP}\ -{\rm J_2}$ использовали кварцевый мембранный манометр с индуктивным датчиком. На основании полученных данных о равновесном давлении в указанных системах устанавливали оптимальные условия кристаллизации твердых растворов арсенид-фосфид индия из газовой фазы за счет химической реакции.

Выращивание монокристаллов 3n As_{4-x} P_x осуществляли в вакуумированных кварцевых ампулах в горизонтальных двухзонных печах. Концентрация йода составляла 0.5-5 мг/см 3 , температура в воне источника была $960-910^{\circ}\mathrm{C}$, а в зоне кристаллизации $-910-880^{\circ}\mathrm{C}$.

Описана методика получения кристаллов и поликристаллических слоев твердых растворов арсенид- фосфид индия в открытом йодидном процессе. В качестве газа-носителя использовали гелий.

Для определения химического и фазового состава твердых растворов ${\rm Jn}$ As $_{1 \to {\rm X}}$ ${\rm P}_{{\rm X}}$ и промежуточных продуктов взаимодействия смеси арсенида и фосфида индия с йодом применяли химический, рентгенографический, термографический и микроструктурный методы анализа. Результаты этих исследований, а также измерения физизико-химических и электрофизических свойств полученных нами твердых растворов давали оценку метода кристаллизации.

ТРЕТЬЯ ГЛАВА.

В главе рассматривается гетерогенное равновесие в системах $JnAs_{4-x}$ P_x - J_2 - (инертный газ).

С учетом литературных данных установлено, что перенос ар-

сенида индия в закрытом йодидном процессе в основном протекает по двум реакциям

$$2 \operatorname{JnAs}_{(TB)} + \operatorname{JnJ}_{3(\Gamma)} = 3 \operatorname{JnJ}_{(\Gamma)} + \frac{1}{2} \operatorname{As}_{4(\Gamma)}$$
 (I)
 $2 \operatorname{As}_{2(\Gamma)} = \operatorname{As}_{4(\Gamma)}$ (2)

По величине общего равновесного давления при известных объеме и начальной концентрации йода рассчитаны парциальные давления газообразных компонентов системы $\mathbf{JnAs} - \mathbf{J_2}$ и константа равновесия реакции (I), приведенные в табл. I.

Таблица І

TA	B arm	T,OK		
Кр	JnJ ₃	Jn J	As 4	I, R
2,14.10 ⁻⁵	2,52.10-2	2,22.10-2	2,40.10 ⁻³	700
4,07-10-4	3,59·I0 ⁻²	5,13·10 ⁻²	1,17.10-2	750
I,76·10 ⁻³	4,78.10-2	8,12.10-2	2,49.10-2	800
6,27-10 ⁻³	6,14.10-2	I,22·10 ⁻¹	4,50.10-2	850
2,91-10-2	6,81.10-5	I,97·10 ^{-I}	6,64.10-2	900
4,25-10-2	I,14°10 ⁻¹	2,52*IO ^{-I}	9,15.10-2	950
5,73:10-2	I,49·10 ⁻¹	2,95·10 ⁻¹	I,II.10-I	1000

Описывается и обсуждается взаимодействие арсенида индия с йодом при различных температурах. В интерваже $80-120^{\circ}$ С (n=0.5-1.5 мг/см³) общее давление в системе $3nAs-3_2$ падает до нижнето предела чувствительности манометра Бурдона, что свидетельствует о начале реакции между исходиним веществами. В результате

в газовой фазе появляются молекулы трийодида индия и мышьяка.

в интервале 410-710°С ход кривой $P_{\text{общ}}=f$ (t) определяется давлением молекул JnJ_{a} и JnJ_{b} , образующегося по реакциям

$$J_n J_{a(r)} = J_{n(x)} + I_{,5} J_{2(r)}$$
 (3)

$$\operatorname{InJ}_{3(\Gamma)} + 2\operatorname{In}_{(\Xi)} = 3\operatorname{InJ}_{(\Gamma)}$$
 (4)

Указанные превращения фиксируются двумя изломами на кривой зависимости общего давления от температуры.

На основании полученных результатов была установлена следующая температурная зависимость константы равновесия реакции (I) ($410-710^{\circ}$ C) :

$$e_{q} K_{p} = -\frac{9340}{T} + 8.89 (K_{p} B arm)$$
 (5)

Прямолинейная зависимость ℓg $\kappa_p = f$ $(\frac{1}{T})$ хорошо соблюдается лишь в интервале между изломами на кривой $P_{\text{общ.}} = f$ (t). Следовательно, преобладающее равновесие в системе арсенид ин дин-йод в области температур 410-710°C описывается в основном реакцией (I) с учетом диссоциации четырехатомных молекул мышь-яка.

Из уравнения (5) были определены энтальпия A и энтропия AS реакции (I), которые оказались соответсвенно равны 42, 7 + 4,3 ккал/моль и 40,7 + 4,1 кал/град.моль.

В главе также рассмотрен процесс переноса арсенида индия в открытой йодидной системе в атмосфере гелия. По убыли веса транспортируемого вещества были рассчитаны парциальные давления йодидов индия и мышьяка, а затем относительное пересыщение (В) при различных температурах, начальной концентрации йода и расходе газа-носителя.

На основа пелупьтатов измерения общего равновесного дав-

ления газообразных компонентов системы ${\tt JnAs-JnP-J_2}$ рассматривается процесс взаимодействия арсенида и фосфида индия с йодом в интервале $20-930^{\circ}{\tt C}$ с последующим анализом образующейся твердой фазы (методом закалки).

Параллельное расположение кривых $P_{\text{общ.}} = f$ (t) для различных составов смеси Jn As и Jn P указывает на аналогию процессов, имеющих место в исследуемых системах, а также свидетельствует об определенной последовательности протекания основных и промежуточных реакций при нагревании исходных компонентов.

Из анализа литературных данных, результатов измерения общего давления и исследования реакции арсенида индия с йодом предполагается, что в высотемпературной области в равновесии с твердой фазой (JnAs + JnP) находятся преимущественно газообразные молекулы JnJ, As_4 , As_2 , P_4 , P_2 . При этом возможно взаимодействие между молекулами мышьяка и фосфора с образованием соединений P_3As , P_2As , PAs_3 .

ЧЕТВЕРТАЯ ГЛАВА.

Результаты, полученные при исследовании равновесия в системах арсенид-фосфид индия - йод - (инертный газ) использоватись для установления оптимальных условий кристаллизации твер- дых растворов.

Наиболее крупные монокристаллы ${\rm Jn\,As}_{\rm 4-x}$ ${\rm P_x}$ с размерами ${\rm IOX5x2}$ мм были выращены в кварцевых ампулах длиной 200 мм и внутренним диаметром 25 мм при начальной концентрации йода ${\rm h_{2}}$ = ${\rm I-2~MP/cm^3}$, ${\rm t_2}$ = ${\rm 930^{\circ}C}$, ${\rm t_I}$ = ${\rm 900^{\circ}C}$. Некоторые результаты кристаллизации твердих растворов закрытых йодидным методом представлены в табл. 2 (продолжительность процесса, размеры ампул во вест ойстах одих и те че).

Состав исходной смеси, мол.%		t2,00	t _I ,°c	n _{y2} ,	Качество выращенных
In As	JnP			MF/CM ³	кристаллов
I00	0	900	880	2	Объемные монокристал- лы 6x5x4 мм
. 80	20	940	900	4	Пористые кристаллы и дендриты
60	40	950	890	3	Кристаллы обогащены фосфором по сравнению с составом исходной смеси
50	50	930	900	r	Пластинчатые монокри- сталлы заданного со- става с ровными блес- тящими поверхностями (IOx5x2 мм)

Следует отметить, что в процессе кристаллизации твердых растворов арсенид-фосфид индия при прочих равных условиях решающую роль играет концентрация переносчика. При $\Pi_{J_2} = 0.5$ -I,5 мг/см³ происходит рост объемных монокристаллов с ровными и зеркальными поверхностями. При увеличении начальной концентрации йода до 3-4 мг/см³ в кристаллах возникают пустоты и раковины изза большой скорости переноса, а в случае $\Pi_{J_2} > 5$ мг/см³ одновременно с ростом наблюдается травление граней компонентами газо вой фазы. Дефекти также образуются вследствие растрескивания кристаллов при охнаждении (особение в случае прилипания последных к стенке ампулы) или из-за резких изменений условий роста (мостное пересхлаждение, механические колебания).

На примере переноса арсенида индия в открытой йодидной системе было показано, что одним из основных параметров, характеризующих кристаллизацию из газовой фазы, является пересыщение (β). При значениях пересыщения больше 3 максимальная длина объщеных кристаллов достигала 2 мм, а при уменьшении β до 0,1-I на кварцевой подложке росли поликристаллические слои.

Выращенные из газовой фазы монокристаллы твердых растворов \mathbf{Jn} As $_{\mathbf{1-x}}$ $\mathbf{P_x}$ подвергали всестороннему анализу. Определени параметры решетки, микротвердость, плотность, а также некоторые их полупроводниковые свойства.

Изменение постоянной решетки в системе ${\rm Jn\,As-Jn\,P}$ находится в ееетветствии с правилом Вегарда. Микротвердость (${\rm H}_{50}$),
измеренная на гранях (III) монокристаллических пластинок без
учета микрохрупкости, плавно уменьшается от фосфида (${\rm 450 kr/mm}^2$)
к арсениду индия (${\rm 320 kr/mm}^2$). Плотность кристаллов твердых растворов, определенная пикнометрически, монотонно уменьшается от
5,70 для ${\rm Jn\,As}$ до 4,76 ${\rm r/cm}^3$ для ${\rm Jn\,P}$.

Все кристаллы \mathbf{Jn} As $_{4-\mathbf{x}}$ $\mathbf{P}_{\mathbf{x}}$, выращенные из газовой фазы закрытым йодидным методом, обладали электронным типом проводимости. Причем концентрация носителей тока твердых растворов с содержанием \mathbf{IO} , $\mathbf{2O}$ и $\mathbf{3O}$ мол.% фосфида индия, рассчитанная по величине постоянной холла, была около $\mathbf{IO}^{\mathbf{IG}}$ см $^{-3}$, а электропроводность монотонно возрастала от $\mathbf{0.9 \cdot IO}^{\mathbf{I}}$ для \mathbf{Jn} P до $\mathbf{2.2 \cdot I()^{2}}$ ом см $\mathbf{IO}^{\mathbf{IO}}$ для \mathbf{Jn} P до $\mathbf{2.2 \cdot I()^{2}}$ ом см $\mathbf{IO}^{\mathbf{IO}}$ для $\mathbf{IO}^{\mathbf{IO}}$ для $\mathbf{IO}^{\mathbf{IO}}$ см $\mathbf{IO}^{\mathbf{IO}}$ для $\mathbf{IO}^{\mathbf{IO}}$ для $\mathbf{IO}^{\mathbf{IO}}$ см $\mathbf{IO}^{\mathbf{IO}}$ см $\mathbf{IO}^{\mathbf{IO}}$ см $\mathbf{IO}^{\mathbf{IO}}$ см $\mathbf{IO}^{\mathbf{IO}}$ см $\mathbf{IO}^{\mathbf{IO}}$ см $\mathbf{IO}^{\mathbf{IO}}$ для $\mathbf{IO}^{\mathbf{IO}}$ см $\mathbf{IO}^{\mathbf{IO}}$ для $\mathbf{IO}^{\mathbf{IO}}$ см $\mathbf{IO}^{\mathbf{IO}^{\mathbf{IO}}}$ см $\mathbf{IO}^{\mathbf{IO}}$ см $\mathbf{IO}^{\mathbf{IO}}$ см $\mathbf{IO}^{\mathbf{I$

HATAH PJABA.

Посвящена обсуждению результатов исследования равновесия в системах $\mathbf{J}\mathbf{n}$ $\mathbf{A}\mathbf{s}$ $\mathbf{I}_{-\mathbf{X}}$ $\mathbf{P}_{\mathbf{X}}$ — \mathbf{J}_{2} — (янертный газ) и кристалянза- ции твердых растворов арсенид-фостид индия из газовой разм.

При вышеуказанных условиях равновесные давления в системах ${\rm Jn}\,{\rm As}_{1-{\rm x}}\,{\rm P}_{\rm x}-{\rm J}_2$ сближаются по величине, тем самым обеспечивая постоянство отношения парциальных давлений мышьяка и фосфора (${\rm p}_{\rm As}/{\rm p}_{\rm p}$) в газовой фазе и, следовательно, получение однородных монокристаллов.

Некоторые преимущества по сравнению с закрытым имеет открытый вариант метода химических транспортных реакций, так как перенос вещества в потоке инертного газа (или другого газа-носителя) посредством галогенов ускоряет кристаллизацию и дост возможность регулировать состав газовой фазы и пересыщение.

На основании результатов настоящей работы можно предположить, что при кристаллизации методом газотранспортных реакций как арсенида и фосфида индия, так и твердых растворов между ними имеет место один и тот же механизм роста. В первом приближении рост пластинчатых монокристаллов, ориентированных в направлении [III], объясняется следующим образом:

У полупроводниковых соединений \mathbf{A} \mathbf{B} плоскости (\mathbf{III}) содержат только атомы группы III, а противоположные плоскости (III)-только атомы группы \mathbf{Y} . Причем плоскость \mathbf{A} — атомов в направлении [III] предшествует плоскости \mathbf{B} — атомов, а в противоположном направлении [\mathbf{III}] порядок расположения плоскостей обратный.

При повышенной температуре (T_2) в газовой фазе системы ${\tt Jn\,As-Jn\,P-J_2}$ преобладают молекулы ${\tt JnJ,\,As_4,\,As_2,\,P_4,\,P_2,\,}$ при переносе которых посредством диффузии при наличии градиента концентраций в зону кристаллизации (T_1) происходят фазовые превращения типа

$$(As_4, As_2)_{(r)} - As_{(TB)}$$

 $(P_4, P_2)_{(r)} - P_{(TB)}.$

В результате перемещения газообразных веществ с одинако-

При взаимодействии арсенида индия с йодом в системе ${\tt Jn\,As-J_2}$ протекает реакция (I) с последующей диссоциацией четырехатомных молекул мышьяка. С ростом температуры концентрация йода падает, а количество газообразных молекул ${\tt Jn\,J_3}, {\tt Jn\,J}, {\tt As}_4, {\tt As}_2$ растет (в соответствии с расчетом), поэтому равновесие реакции (I) смещается вправо. Понижение температуры процесса ведет к сдвигу равновесия (I) влево в сторону образования твердого арсенида индия за счет уменьшения в газовой фазе концентрации ${\tt JnJ}.$

Рост константы равновесия с температурой и положительный знак энтальпии реакции (I) показывает, что перенос арсенида индин в закрытой йодидной системе происходит согласно принципу Лешателье в направлении от более высокой (T_2) к более низкой температуре (T_1) . Преобладание в газовой фазе в высокотемпературной области четекул ${\tt JnJ}$ дает возможность использовать твердый негипроской министрации индин в качестве источника йода в процессе транспорта ${\tt JnAs}$.

Выбор оптимального режима кристаллизации твердых растворов ${\tt Jn}\,{\tt As}_{{\tt J-x}}\,{\tt P}_{{\tt X}}$ проводили на основании анализа кривых ${\tt P}_{{\tt Oбщ}}$ = ${\tt f}({\tt t})$ с учетом результатов переноса арсенида индия в закрытой йодидной системе. Наиболее благоприятные условия, приводящие к образованию монокристаллов заданного состава, были следующие: ${\tt n}_{{\tt J}_2}$ = ${\tt I}\,{\tt Mr/cm}^3$, ${\tt t}_2$ = $920-930^{\rm O}{\tt C}$, ${\tt t}_1$ = $900-910^{\rm O}{\tt C}$. При этом общее давление газообразных комнопентов системы ${\tt Jn}\,{\tt As}-{\tt Jn}\,{\tt P}-{\tt J}_2$ не превышало ${\tt J}\,{\tt atm}-{\tt верхнего}$ предела давлений диффузионной области. А когда в закрытон процессе перенос определяется диффузией при постоянном градиенте концентраций, скорость диффузии (переноса) обратно пропорциональна давлению, что и наблюдается при транспорте смеси арсенида и фосфида иний.

вой скоростью на плоскости (III) зародыша кристалиа одновременно осаждаются атомы мышьяка и фосфора, а на противоположной атомы индия. При этом на законченной плоскости (III) никакой атом присоединиться не может, но с появлением нового зародыша процесс повторяется в той же последовательности.

Близость характера химической связи Jn As и Jn P, а также небольшое различие атомных радиусов мышьяка и фосфора способствуют образованию совершенных по структуре кристаллов твердых растворов арсенид-фосфид индия заданного состава.

Методика получения твердых растворов замещения и особенности взаимодействия между исходными компонентами в значительной степени определяют вид диаграмм состав-свойство. Согласно основным физико-химическим законам свойства твердых растворов изменяются по плавным кривым, часто имеющим максимум или минимум.

В системе ${\tt Jn\,As-Jn\,P}$ нами не были обнаружены экстремальные значения микротвердости (без учета микрохрупкости). Это, повидимому, связано с тем, что при кристаллизации твердых растворов из газовой фазы за счет диффузионного взаимодействия между исходными компонентами происходит упорядоченное распределение атомов мышьяка и фосфора в решетке ${\tt Jn\,As}_{4-x}$ ${\tt P}_x$.

В соответствии с правилом Вегарда зависимость плотности от состава твердых растворов арсенид-фосфид индия аддитивна. Небольшое отклонение значений плотности для ряда образцов ${\bf JnAs_{1-x}P_x}$ можно объяснить наличием раковин и пор в отдельных кристаллах.

Для характеристики основных полупроводниковых свойств выращенных из газовой фазы монокристаллов проводились измерения электропроводности, постоянной Холла и термо- Э.Д.С.

По знаку терно- Э.Д.С. все измеренные нами образцы были П-типа, что объясняется присутствием донорных примесей (S, Se, Те), счистка от которых представляет большие трудности. Коэффициенты распределения этих элементов в соединениях A B близки к единице. Концентрация носителей тока в монокристаллах твердых растворов 3n As $_{1-x}P_x$, выращенных из газовой фазы, была ниже 10^{16} см $^{-3}$, в то время как после зонной перекристаллизации наиболее чистые образцы имели $n = 10^{17}$ см $^{-3}$.

Таким образом, сравнительно низкая температура процесса и простота аппаратурного оформления в сочетании с хорожим ством выращенных кристаллов делают метод газотранспортних реакций перспективным для получения твердых растворов арсенид-фесфид индия заданного состава. При этом кристаллизация твердых растворов из газовой фазы имеет ряд преимуществ по сравнению с другими методами.

выводы

- I. Исследовано равновесие в системе ${\tt Jn\,As-J_2}$ в интервале от 20 до 930 ${\tt ^{O}C}$.
- 2. Показано, что процесс взаимодействия арсенида индия с йодом в зависимости от температуры протекает в две стадии :
 - I) Образование молекул трийодида индип и мышьяка до $410^{\circ}\mathrm{C}_{i}$
- 2) Разложение трийодида индия до монойодида в интервале температур $410-710^{\circ}$ C по реакциям

$$\Im n \Im_{3(\Gamma)} = \Im n_{(R)} + 1.5 \Im_{2(\Gamma)}$$
 $\Im n \Im_{3(\Gamma)} + 2 \Im n_{(R)} = 3 \Im n \Im_{(\Gamma)}$

3. Найдено, что равновесие в системе ${\tt JnAs-J_2}$ описывается уравнением реакции

$$2 \operatorname{JnAs}_{(TB)} + \operatorname{JnJ}_{3(F)} = 3 \operatorname{JnJ}_{(F)} + \frac{1}{2} \operatorname{As}_{4(F)}$$

с учетом диссоциации четырехатомных молекул мышьяка

4. Определена константа равновесия

$$\ell q K_p = -\frac{9340}{T} + 8,89 \text{ (atm.)},$$

а также энтальпия и энтропия этой реакции в интервале $410-710^{\circ}$ С $\Delta H = 42,7 \pm 4,3$ ккал/моль и $\Delta S = 40,7 \pm 4,1$ кал/моль град.

- 5. Найдено, что оптимальные условия переноса и выращивания монокристаллов арсенида индия определяются температурной зависимостью $P_{\text{Общ.}} = f(t)$ выше точки второго излома. При этом показано, что в процессе переноса JnAs в качестве источника йода выгодно применять монойодид индия, являющийся компонентом газовой фазы.
- 6. Исследовано равновесие в системе ${\rm Jn\,As-J_2-He}$. По-лучены данные об условиях осаждения поликристаллических слоев или объемных кристаллов арсенида индия, открытым йодидным мето-дом в зависимости от величины пересыщения.
- 7. Измерено общее равновесное давление газообразных веществ системы ${\tt Jn\,As-Jn\,P-J_2}$ в интервале температур $20-930^{\circ}{\tt C}$ при различных соотношениях исходных компонентов.
- 8. На основе зависимости $P_{\text{Обц.}}$ от начальной концентрации йода ($n_{\text{J}_2} = 0.5-5.0 \text{ мг/см}^3$) и температуры определены оптимальные условия выращивания монокристаллов тройных твердых растворов арсенид-фосфид индия заданного состава в закрытом йодидном процессе :

 $n_{J_2} = I \text{ mr/cm}^3$, $t_2 = 920-930^{\circ}\text{C}$, $t_1 = 900-910^{\circ}\text{C}$.

Получены как объемные, так и пластинчатые монокристаллы с размерами до 10x5x2мм с преимущественным ростом в направлении [III].

9. Исследованы плотис п и микротвердость кристаллов тве-

рдых растворов $\mathsf{JnAs}_{4-\mathsf{K}}$ P_{K} , выращенных из газовой фазы в присутствии йода. Найдено, что ход кривой микротвердость — состав не имеет максимума (без учета микрохрупкости).

10. Твердые растворы системы $\operatorname{Jn} As - \operatorname{Jn} P$, полученные в закрытом йодидном процессе, обладают n — типом проводимости и концентрацией носителей тока при комнатной температуре около TO^{16} см $^{-3}$. Электропроводность твердых растворов монотонно возрастает от $0.9 \cdot 10^1$ ом $^{-1}$ см $^{-1}$ для фосфида до $2.2 \cdot 10^2$ ом $^{-1}$ см $^{-1}$ чля арсенида индия. При этом характер изменения электропроводности с ростом температуры аналогичен для других систем твердых растворов, образуемых соединениями A B.

ТІ. Высокое качество полученных монокристаллов твердых растворов, а также простота примененного метода газотранспортных реакций выгодно отличает его от других методов кристаллизации полупроводниковых материалов сложних составов.

Розультаты работы докладывались на Научных конференциях инхи (черноголовка, 1967) и ИОНХ (москва, 1968) и опубликованы в следующих статьях:

- З.С. Медведева, Т.Н. Гулиев, А.А. Егоров. Со." Сложные полупроводники " под ред. Г.Б. Абдуллавва, Баку, 1966.
- 2. Л.А. Егоров, З.С. Медведева. Заводская лаборатория, 31, № II, 1416 (1965).
- 3. Л.А. Егоров, З.С. Медведева. Изв. АН СССР, Сер. неорган. материалы, I, 1620 (1965).
- 4. И.В. Гордеев, Л.А.-Егоров, П.В. Шаханов. Изв. АН СССР. Сер. неорган. материалы, 2, 1872 (1966).
- 5. Л.А. Егоров, П.В. Шаханов, О.Д. Торбова, И.В. Гордест Изв. АН СССР, Сер. неорган. материалы, 3, 88I (1967).
 - 6. Л.А. Егоров. Тезисы докладов Научной конференции по

неорганической химии, посвященной 50-летию ИОНХ им. Н.С. Курнакова, Изд-во "Наука", Москва, 1968.

7. Л.А. Егоров, О.Д. Торбова. Изв. АН СССР, Сер. неорган. материалы, 5, 173 (1969).

8. Л.А. Егоров, В.Н. Кочнев. Изв. АН СССР, Сер. неорган. материалы, **5**, (1969), (в печати).

9. Л.А. Егоров, В.Н. Доронин, З.С. Медведева. Изв. АН СССР, Сер. неорган. материалы, (1969), (в печати).